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ОБЛАСТІ АМПЛІТУДНОГО ТА ФАЗОВОГО РЕЗОНАНСУ  
В ЕЛЕКТРИЧНИХ МОСТОВИХ ЛАНЦЮГАХ 

Анотація. Робота присвячена дослідженню амплітудно-частотних 
характеристик двополюсника у вигляді мостового ланцюга з двома активними 
елементами - конденсатором і котушкою індуктивності в протилежних плечах. У таку 
схему укладаються два поширені ланцюги: реальний (з втратами на пасивних 
елементах) паралельний коливальний контур і реальний послідовний коливальний 
контур. Незважаючи на їх широке застосування в радіотехніці та електротехніці, 
точна частотна поведінка таких схем до останнього часу залишалася не дослідженою. 
На практиці досі застосовуються різні емпіричні та наближені методи, у яких питання 
їх застосування та точності (оцінка похибки) залишаються відкритими. Крім того, 
чисельні методи не дозволяють провести якісний аналіз процесів, що протікають у 
таких ланцюгах без точних формул для частотних характеристик ланцюга. Дана 
робота продовжує розпочате нами дослідження мостових двополюсників з активними 
елементами. Знайдені точні умови існування амплітудного та фазового резонансу, які 
раніше були невідомі та узагальнюють вже відомі окремі випадки. 

Ключові слова: мостова схема, амплітудно-частотна характеристика, фазово-
частотна характеристика, реальний паралельний RLC-контур, реальний послідовний 
RLC-контур, амплітудний резонанс, фазовий резонанс.  
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FREQUENCY DOMAINS OF AMPLITUDE AND PHASE RESONANCE  
IN ELECTRICAL BRIDGE NETWORKS 

Abstract. The work is devoted to the study of the amplitude-frequency characteristics of 
a two-terminal network in the form of a bridge circuit with two active elements—a capacitor 
and an inductance coil in opposite arms. Within the framework of such a circuit, two widely 
used circuits are combined: a real (with losses on passive elements) parallel oscillatory circuit 
and a real series oscillatory circuit. Despite their widespread use in radio engineering and 
electrical engineering, the exact frequency behaviour of such circuits has remained unexplored 
until recently. In practice, various empirical and approximate methods are still used, in which 
the issues of their application and accuracy (error estimation) remain open. In addition, 
numerical methods do not allow for a qualitative analysis of the processes occurring in such 
circuits without accurate formulas for the frequency characteristics of the circuit. This work 
continues our research on bridge two-terminal networks with active elements. We have found 
the exact conditions for the existence of amplitude and phase resonance, which were previously 
unknown and generalize already known individual cases. 

Keywords: bridge circuit, amplitude-frequency characteristic, phase-frequency 
characteristic, real parallel RLC-circuit, real series RLC-circuit, amplitude resonance, phase 
resonance. 

 
1. Introduction. Bridge circuits are fundamental components in electrical engineering, 

widely used for measuring impedance, analysing resonance phenomena, and designing filters 
[1, 7, 8]. Understanding the conditions under which amplitude and phase resonance occur in 
such circuits is essential for optimizing their performance. In this study, a generalized bridge 
circuit is analysed, and the exact conditions defining the domains of resonance existence are 
determined. The analysis is based on admittance and impedance transformations that reveal the 
circuit’s internal symmetries and self-duality properties. 
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Source: compiled by the author based on [1]. 

Fig. 1. A two-terminal network in the form of a bridge  
and its special case with two active elements 

 
Let us consider a bridge circuit in the form of a two-terminal network shown in Fig. 1. 

An alternating voltage with frequency ω is applied to the input A and output C of the circuit. 
The current flowing through the circuit depends on the impedances of the elements Z1, Z2, Z3, 
Z4, and Z5. The current is determined by the input impedance ZAC (or admittance YAC). We will 
use the formulas for the admittance and impedance of the bridge, which can be obtained using 
the delta-star or star-delta transformation. A detailed analysis of such a circuit was first initiated 
in [5], where formulas for the impedance and admittance of the circuit were written in a form 
that reflects the existing symmetries. 

1 2 3 4 3 4 1 2 5 1 2 3 4

1 4 2 3 5 1 2 3 4

( ) ( ) ( )( )
( )( ) ( )AC

Z Z Z Z Z Z Z Z Z Z Z Z ZZ
Z Z Z Z Z Z Z Z Z
+ + + + + +

=
+ + + + + +  

(1) 

1 2 3 4 3 4 1 2 5 1 4 2 3

1 2 3 4 5 1 2 3 4

( ) ( ) ( )( )
( )( ) ( )AC

YY Y Y Y Y Y Y Y Y Y Y YY
Y Y Y Y Y Y Y Y Y
+ + + + + +

=
+ + + + + +  

(2) 

Consider the bridge shown in Fig. 1(right) with resistors R1, R2, R3, and inductance L≠0 
and capacitance C≠0 in the opposite arms. We assume that not all Ri are equal to zero. Then the 

impedances of the arms and the diagonal of the square are as follows: 1
1Z

j Cω
= , 2 1Z R= , 

3Z j Lω= , 4 2Z R= , 5 3Z R= . We will investigate the impedance of this circuit, in the formula 
of which we will make such substitutions of variables that allow us to move from five 
independent parameters defining the circuit to three dimensionless parameters: x CLω= ,

1 /a R C L= , 2 /b R C L= , 3 /c R C L= . The new variable 0/x ω ω= , where 

0 1 / CLω =  is the resonance frequency of an ideal parallel or series LC circuit, is often called 
the reduced frequency, and the parameters a, b, c are quality factors (Q-factors). Such variables 
were introduced to analyse resonance phenomena in RLC circuits and various types of duality 
in [3, 4, 6]. In the new parameters, the input impedance takes the form: 

( , , , )AB
LZ f x a b c
C

= ⋅
 

(3) 

where 
( )
( )

( ) ( ) ( ) /
( , , , )

(1 ) ( ) ( ) /
a b c abc j a b c x b a c x

f x a b c
ab ac bc j b c x a c x

+ + + + + − +
=

+ + + + + − +  
(4) 

The constant factor /L C is frequency-independent, and therefore, to describe the 
frequency characteristics of our circuit, it is sufficient to study only the function ( , , , )f x a b c . 
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We introduce a new variable b c b cw CL x
a c a c

ω + +
= =

+ +
, which we will call the reduced 

bridge frequency. In terms of this variable, all our formulas acquire the simplest form. We also 

introduce two parameters 
2

2 (1 )
( )( )

ab ac bcN
a c b c
+ + +

=
+ +

 and 
2

2 ( )
( )( )

a b c abcM
a c b c
+ + +

=
+ +

, which can 

be considered as analogs of the concept of quality factor for bridge circuits. In the new notation, 
we obtain the function that will be studied further: 

( / )( , , , )
( 1 / )

M j aw b wf w a b c
N j w w
+ −

=
+ −  

(5) 

2. Phase Resonance Analysis. Phase resonance occurs when the input voltage and 
current are in phase, resulting in zero phase shift. This happens when the imaginary part of the 

impedance vanishes: Im( ( , , , )) 0f w a b c = . Based on the derived expressions (5), the phase 
resonance frequency w is given by the formula 

2
2

0 2
( )(1 )( , , )
( )(1 )
a c bw a b c
b c a
+ −

=
+ −

,
 

2 2
2

0 2 2
( ) (1 )( , , )
( ) (1 )
a c bx a b c
b c a
+ −

=
+ −

,
 1a ≠ , 1b ≠  

(6) 

Substituting this value into the impedance expression ( , , , )f w a b c yields the amplitude 
at resonance frequency  

0 0( , , , ) ( , , , )
1

M a b c abcf w a b c f x a b c
N ab ac bc

+ + +
= = =

+ + +  
(7) 

The necessary and sufficient condition for phase resonance existence requires the right-
hand side of (6) to be positive, leading to specific relationships 2 2(1 )(1 ) 0b a− − > between 
parameters a and b: 0 1a< <  and 0 1b< <  or 1a >  and 1b > . The regions of phase 
resonance existence on the parameter plane ,a b  are illustrated in Fig. 3. The phase resonance 
frequency 0 ( , , )x a b c  and the amplitude at that frequency 0( , , , )f x a b c exhibit two symmetry 
relations as defined in equations (8) and (9). 

0 0(1 / ,1 / ,1 / ) ( , , )x a b c x a b c= , 0 0( , , ) 1 / ( , , )x b a c x a b c=  (8) 

0 0( , , , ) ( , , , )f x b a c f x a b c= , 0
0

1( ,1 / ,1 / ,1 / )
( , , , ))

f x a b c
f x a b c

=  (9) 

Notably, the presence or absence of phase resonance does not depend on the diagonal 
BD resistance R3 of the bridge. 

3. Amplitude Resonance. The amplitude resonance frequency is defined as the 
frequency at which the amplitude of the current passing through the circuit reaches a maximum 
or minimum (current or voltage resonance). To find it, we calculate the squared modulus of the 
function ( , , , )f w a b c : 

( )
( )

22 2 2
2

22 2 2
( , , , ) ( , , , )

1)

w M aw b
F w a b c f w a b c

w N w

+ −
= =

+ −
 

(10) 
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To find the extremum point of this function, we look for the root of its derivative. After 
differentiation, we obtain the equation for the extremum point: 

( )
( )

22 2 2 2 4 2

2 42 2 2
( , , , )

11)

w M aw b a w bF w a b c
ww N w

+ − −
= =

−+ −
 

(11) 

After simple transformations, we arrive at the following biquadratic equation: 
4 2 2 2 2 2 2 2 2 2( 2 ( )) 2 ( ) ( 2 ( )) 0w a N M a b a w b a b N M b a b− + − − − − − + − =  (12) 

Equation (12) possesses dualities inherited from the original bridge. These dualities 
arise from the substitutions a ↔ b and inversion of all parameters 1 /a a↔ , 1 /b b↔ , 

1 /c c↔ . If (12) is written as 

( )4 2
4 2 0( , , ) , , ( , , ) 0k a b c w k a b c w k a b c+ + =  (13) 

then ( , , ) ( , , )M a b c M b a c= , ( , , ) ( , , )N a b c N b a c=  (14) 

2 2( , , ) ( , , )k a b c k b a c= − , 4 0( , , ) ( , , )k a b c k b a c= −  (15) 

This means that the roots satisfy the condition 

2
0 2

0

1( , , )
( , , )

w a b c
w b a c

=
 

(16) 

The condition 

2 21(1/ ,1 / ,1 / ) ( , , )M a b c N b a c
ab

= .
 

2 21(1/ ,1 / ,1 / ) ( , , )N a b c M b a c
ab

=
 

(17) 

means that when the parameters are inverted, equation (12) is multiplied by a constant, and its 
roots remain unchanged. 

2 2
0 0(1 / ,1 / ,1 / ) ( , , )w a b c w b a c=  (18) 

The discriminant D of equation (12) can be represented as 
2

2
2 4 0

4(1 )( , , ) 4 ( , , ) ( , , )
( )( )

abD k a b c k a b c k a b c
a c b c

−
= − =

+ +

 

( )2 2 2 2 2 2 2(1 2 )(1 2 ) (3(1 ) 2( )) ( 2 )( 2 )c ab a ab b c ab a b ab a b a b b a+ + + + + + + + + + + + +
 

(19) 

 
From this representation, it follows that the discriminant is always positive (for                       

1ab ≠ ), which means that the quadratic equation always has roots. However, we are only 
interested in the positive root since it 2

0 ( , , )w a b c corresponds to a physical frequency. From the 
origin of this equation as the condition for the extrema of ( , , , )f x a b c and from its dualities, 
it follows that this quadratic equation can have either two negative roots or one positive and 
one negative. A positive root exists, and hence an amplitude resonance point exists, only if 

4 0( , , ) ( , , ) 0k a b c k a b c <  That means  
2 2 2 2 2 2( 2 ( ))( 2 ( )) 0a N M a b a b N M b a b− + − − + − >  (20) 
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Returning to the parameters and simplifying by positive factors, condition (20) can be 
written as ( , , ) ( , , ) 0a b c b a cϕ ψ >  

4( , , ) ( 1)( ) 2 ( 1)(1 )a b c a b c a ab acϕ = − + + − +  (21) 

4( , , ) ( , , ) ( 1)( ) 2 ( 1)(1 )a b c b a c b a c b ab bcψ ϕ= = − + + − +  (22) 

Thus, the domain of existence of amplitude resonance in the parameter space (a, b, c) is 
determined by the conditions 

( , , ) 0
( , , ) 0
a b c
b a c

ϕ
ϕ

>
 >

 or 
( , , 0
( , , ) 0
a b c
b a c

ϕ
ϕ

<
 <  

(23) 

 

 
Source: compiled by the author based on [1]. 

Fig. 2. Series (left, c = 0) and parallel (right, c =∞) circuits  
as special cases of the bridge circuit 

 
It should be noted that all the derived formulas are stable with respect to limiting 

transitions. They remain valid when the parameters ( , , )a b c approach zero or infinity. In 
particular, when c → ∞ our bridge circuit transforms into a real (lossy) series RLC circuit, and 
when c → 0 – into a real parallel RLC circuit (see Fig. 2). For these circuits, equation (12) 
allows an elegant symmetric solution, first found in [3, 6] for the parallel circuit. In [2], the 
conditions for the existence of amplitude resonance for such a circuit were first derived, and 
the corresponding existence domains in the parameter space (a, b) were plotted. In [4, 5], it was 
shown how, through duality, the results for the parallel circuit can be extended to the series 
circuit, yielding the corresponding formulas. In the derived formulas, dual expressions 
appearing in the expansion of the discriminant D (19) of the quadratic equation play a key role: 

( )21 2ab a+ + , ( )21 2ab b+ + , ( )2 2ab a b+ + , ( )2 2a b b a+ +
 

(23) 

2 2 2
2

0 2 2 2

1 2 1 2( , , )
1 2 1 2

ab b b ab ax a b
ab a a ab b

+ + − + +
=

+
∞

+ + − +  
(24) 

2 2 2
2 2

0 0 2 2 2

1 1/ ( ) 2 / 1 / 1 1/ ( ) 2 /
( , ,0) (1 / ,1 / , )

1 1/ ( ) 2 / 1 / 1 1/ ( ) 2 /
ab b b ab a

x a b x a b
ab a a ab b

+ + − + +
= = =

+
∞

+ + − +  

( )
( )

2 2

2 2

2 2

2 2

b ab ab a b a b b aa a
b b a ab a b b a ab a b

+ + − + +
=

+ + − + +
 

(25) 

In Fig. 3 and Fig. 4, domains on the parameter planes ( , )a b are shown where amplitude 
resonance exists or does not exist. On the left side of Fig. 3, the domains (I), (II) show the 
presence of phase resonance, while domains (III), (IV) show its absence. In the middle of Fig. 3, 
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the domains of existence and nonexistence of amplitude resonance of the parallel RLC circuit 
(the special case of the bridge for c = ∞) are shown. The boundaries of  
these domains are defined by equations 

4 2

4 2

( , , ) ( 1) 2 ( 1) 0
( , , ) ( , , ) ( 1) 2 ( 1) 0
a b a a ab
a b b a b b ab

ϕ

ψ ϕ

 ∞ = − + − =


∞ = ∞ = − + − =  
(26) 

 

 
Source: author's development using a computer program. 

Fig. 3. Domains of existence (I) and (II) and non-existence (III) and (IV) of phase (left) 
and amplitude resonance. In the center, c = ∞; on the right, c = 0 

 

 
Source: author's development using a computer program. 

Fig. 4. Regions of existence (I), (II) of amplitude resonance for arbitrary c  
with boundary curves for c = 0 and c = ∞ 

The intersection points of the boundaries with the coordinate axes are at 1 2a = +  

and 1 2b = + . On the right side of Fig. 3, the regions of existence and nonexistence of 
amplitude resonance of the series RLC circuit (the special case of the bridge for c = 0) are 
shown. The boundaries of these regions are determined by equations 

4

4

( , ,0) ( 1) 2 ( 1) 0
( , ,0) ( , ,0) ( 1) 2 ( 1) 0
a b a b a ab
a b b a b a b ab

ϕ

ψ ϕ

 = − + − =


= = − + − =  
(27) 
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These curves have asymptotes at 2 1a = − , 2 1b = − and asymptotically 
approach the coordinate axes. In Fig. 4, the domains (I), (II) where amplitude resonance exists 
for arbitrary c are shown. As a typical example, the value c = 1 is taken. The boundaries of the 
resonance existence domains are determined by equations (21), (22) and are located between 
the curves for c = 0 and c = ∞. As seen in Fig. 4, when the parameter c decreases from ∞ to 0, 
the resonance existence region (I) expands. It should also be noted that in domains (I) the 
function 

2( , , , ) ( , , , )F w a b c f w a b c= has a maximum, corresponding to current resonance, 
while in domains (II) the modulus of the impedance has a minimum, corresponding to voltage 
resonance. In domains (III) the modulus of the impedance increases monotonically, and in 
domains (IV) it decreases monotonically. 

4. Special and limiting cases. A particular point in the study of the frequency behaviour 
of the bridge circuit is the point 1; 1a b= = . At this point, the impedance becomes a constant 
function, independent of frequency. In the neighbourhood of this point, the resonance properties 
of the circuit become unpredictable – this is the bifurcation point of the resonance frequency. 
Approaching this point along different paths can lead to any resonance frequency value. The 
above formulas in this case become indeterminate. 

If 1a b= ≠ , all the formulas become absolutely symmetric with respect to substitution 
a b↔  and yield a unit reduced frequency of phase and amplitude resonance 

0 01; 1 /x CLω= = .  
For a balanced bridge 1 2 2 4Z Z Z Z= , in our parameters we obtain the condition 
1a b⋅ = . One can verify that in this case neither phase nor amplitude resonance occurs for any 

value of c. The curve 1a b⋅ =  always lies in the middle of domains (III) and (IV) for any value 
of c. In Fig. 3 it is shown as a dashed line. 

5. Conclusion. The presented analysis establishes a unified basis for studying the 
frequency-dependent behavior of generalized bridge circuits. As a result of our research, we 
have obtained new, previously unknown results concerning the frequency behavior of bridge 
circuits. The derived conditions for amplitude and phase resonance determine the exact 
boundaries between resonant and non-resonant regions. The introduced dimensionless 
parameters allow us to obtain a compact analytical representation and emphasize the self-
duality and symmetry inherent in the system. We show how the properties of self-duality and 
self-symmetry of the circuit are reflected in the obtained exact formulas. These results naturally 
extend to classical RLC circuits as limiting cases of the bridge configuration. 
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