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Anomauin.  Poboma  npuceésuena  00CHIONCEHHIO  AMNIIMYOHO-4ACMOMHUX
Xapaxkmepucmukx OBONONIOCHUKA ) 6U2NA0i MOCMOB020 JNAHYI2A 3 080MA AKMUBHUMU
eemMeHmamu - KOHO@HCAmopoM i KOMYUIKOI IHOYKMUBHOCII 8 NPOMUNIEHCHUX nieyax. Y maxy
cxemy YKIAOaromubCs 084 NOWIUPEHi JNAHYIO2U: peanvHuti (3 empamamu Ha NACUSBHUX
eleMeHmax) napanieibHutl KOAUAlbHULL KOHMYp I pearvbHutl NOCHiO08HUU KOIUBATbHULL
kowmyp. Hessaodicarouu na ix wupoke 3acmocyanHs 8 padiomexHiyi ma eiexmpomexuiyi,
MOYHA YACMOMHA NOBEOIHKA MAKUX CXeM 00 OCMAHHbO2O0 HYAC)y 3ANUULANACS He Q0CTIOHNCEHOIO.
Ha npaxmuyi ooci 3acmocogytomvcs pizHi eMnipudHi ma HAOAUNCeHi Memoou, y AKUX NUMAaHHSL
ix 3acmocysanna ma mounocmi (oyinka noxubxu) 3anuuwiaromsca eiokpumumu. Kpim moeo,
YUCenbHI Memoou He 00380JI5110Mb NPOBeCmMU AKICHUN AHANI3 NPoYecis, wo Npomikaoms y
MaxKux J1auyro2ax 6e3 MoOYHUX (POpMYN 0N YACMOMHUX Xapakxmepucmux nauyioza. /ana
poboma npoooesaicye poznodame HAMU OOCTIONCEHH MOCMOBUX OBONOJIIOCHUKIG 3 AKMUBHUMU
eleMeHmamu. 3HatuoeHi MouHi YMOB8U ICHYBAHHS AMIIIMYOH020 Ma (a308020 PE30OHAHCY, AKI
pariute 6y1u HeBIOOMI Ma Y3a2albHIOIOMb 8Ce BI0OMI OKpeMi 8UNAOKU.

Knrwuoei cnoea: mocmosa cxema, amniimyono-4acmomua Xapakmepucmuxda, (pazoeo-
yacmomua xapakmepucmuka, peaivruii napanreivhuii RLC-konmyp, peanvHuili nociioo8Hull
RLC-xoumyp, amnaimyonuii pezonanc, ¢pazosuti pe3oHaHc.
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FREQUENCY DOMAINS OF AMPLITUDE AND PHASE RESONANCE
IN ELECTRICAL BRIDGE NETWORKS

Abstract. The work is devoted to the study of the amplitude-frequency characteristics of
a two-terminal network in the form of a bridge circuit with two active elements—a capacitor
and an inductance coil in opposite arms. Within the framework of such a circuit, two widely
used circuits are combined: a real (with losses on passive elements) parallel oscillatory circuit
and a real series oscillatory circuit. Despite their widespread use in radio engineering and
electrical engineering, the exact frequency behaviour of such circuits has remained unexplored
until recently. In practice, various empirical and approximate methods are still used, in which
the issues of their application and accuracy (error estimation) remain open. In addition,
numerical methods do not allow for a qualitative analysis of the processes occurring in such
circuits without accurate formulas for the frequency characteristics of the circuit. This work
continues our research on bridge two-terminal networks with active elements. We have found
the exact conditions for the existence of amplitude and phase resonance, which were previously
unknown and generalize already known individual cases.

Keywords: bridge circuit, amplitude-frequency characteristic, phase-frequency
characteristic, real parallel RLC-circuit, real series RLC-circuit, amplitude resonance, phase
resonance.

1. Introduction. Bridge circuits are fundamental components in electrical engineering,
widely used for measuring impedance, analysing resonance phenomena, and designing filters
[1, 7, 8]. Understanding the conditions under which amplitude and phase resonance occur in
such circuits is essential for optimizing their performance. In this study, a generalized bridge
circuit is analysed, and the exact conditions defining the domains of resonance existence are
determined. The analysis is based on admittance and impedance transformations that reveal the
circuit’s internal symmetries and self-duality properties.
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Source: compiled by the author based on [1].
Fig. 1. A two-terminal network in the form of a bridge
and its special case with two active elements

Let us consider a bridge circuit in the form of a two-terminal network shown in Fig. 1.
An alternating voltage with frequency o is applied to the input A and output C of the circuit.
The current flowing through the circuit depends on the impedances of the elements Z1, Z,, Z3,
Z4, and Zs. The current is determined by the input impedance Zac (or admittance Y ac). We will
use the formulas for the admittance and impedance of the bridge, which can be obtained using
the delta-star or star-delta transformation. A detailed analysis of such a circuit was first initiated
in [5], where formulas for the impedance and admittance of the circuit were written in a form
that reflects the existing symmetries.

_ 2,2,(Zs+Z,)+Z,2,(Z,+2,)+Z5(Z,+ Z,)(Z;,+ Z,)
(Z,+Z N2, +Z2)+Z(Z,+ 2, +Z,+ Z,)

1)

AC

_ VYo (Y +Y,) + Y5V, () +Y5) + Y5 (Y + Y)Y, +Y5)
* (VL +Y )V +Y,) +Ys (Y +Y, + Y, +Y,)

Consider the bridge shown in Fig. 1(right) with resistors R1, Rz, R3, and inductance L#0
and capacitance C+£0 in the opposite arms. We assume that not all R;are equal to zero. Then the

(2)

1
impedances of the arms and the diagonal of the square are as follows: Z; :T' Z,=R,
Jo

Z,=jolL ,Z, =R, Z, =R,. We will investigate the impedance of this circuit, in the formula
of which we will make such substitutions of variables that allow us to move from five
independent parameters defining the circuit to three dimensionless parameters: x = @~/CL ,

a=R~C/L, b=R,NC/L , c=R,wWC/L . The new variable X=®/ @, , where

@, =1/~/CL isthe resonance frequency of an ideal parallel or series LC circuit, is often called

the reduced frequency, and the parameters a, b, ¢ are quality factors (Q-factors). Such variables
were introduced to analyse resonance phenomena in RLC circuits and various types of duality
in [3, 4, 6]. In the new parameters, the input impedance takes the form:

ZAB=\/%-f(x,a,b,c) (3)

(a+b+c+abc)+ j(a(b+c)x—b(a+c)/x)
(L+ab+ac+bc)+ j((b+c)x—(a+c)/x)

where f(x,a,b,c)= (4)

The constant factor L /C is frequency-independent, and therefore, to describe the
frequency characteristics of our circuit, it is sufficient to study only the function f (x,a,b,c).
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We introduce a new variable w = @+/CL =X , which we will call the reduced
a+c a+c

bridge frequency. In terms of this variable, all our formulas acquire the simplest form. We also

_ 1+ ab + ac + bc)? a+b+c+abc)® .

introduce two parameters N? = ( ) 2 = ( ) , Which can

(a+c)(b+c) (a+c)(b+c)

be considered as analogs of the concept of quality factor for bridge circuits. In the new notation,
we obtain the function that will be studied further:
M+ jlaw—b/w
f(w,a,b,c) = J_(a b/ w) ()
N+ j(w—1/w)
2. Phase Resonance Analysis. Phase resonance occurs when the input voltage and
current are in phase, resulting in zero phase shift. This happens when the imaginary part of the

impedance vanishes: Im(f (w,a,b,c)) = 0. Based on the derived expressions (5), the phase
resonance frequency w is given by the formula

(a+c)(1-b%) X (,b,C)? = (a+c)*(1-b?)

b,c =
wolabe) = (b+c)1-a’) (b+c)’'(1-a%)" a1, b=l

(6)

Substituting this value into the impedance expression f(w,a,b,c) yields the amplitude
at resonance frequency

M a+b+c+abc
f(wy,a,b,c) = f(x,,a,b,c)=—= 7
S ) o ) N 1+ab+ac+hbc (")

The necessary and sufficient condition for phase resonance existence requires the right-
hand side of (6) to be positive, leading to specific relationships (1—b*)(1—a”) > 0 between
parameters a and b: O0<a<1 and O<b<1 or a>1 and b>1. The regions of phase
resonance existence on the parameter plane a,b are illustrated in Fig. 3. The phase resonance
frequency X,(a,b,C) and the amplitude at that frequency f(X,,a,b,C)exhibit two symmetry
relations as defined in equations (8) and (9).

x,(1/a,1/b,1/c)=x,(a,b,c), X,(b,a,c)=1/x,(a,b,c) (8)
f(x,,b,a,c)=f(x,,ab,c), f(xo,lla,llb,llc)zm (9)

Notably, the presence or absence of phase resonance does not depend on the diagonal
BD resistance Rz of the bridge.

3. Amplitude Resonance. The amplitude resonance frequency is defined as the
frequency at which the amplitude of the current passing through the circuit reaches a maximum
or minimum (current or voltage resonance). To find it, we calculate the squared modulus of the

function f(w,a,b,c):
w’M? +(aw2 —b)2
W'N? +(W2 —1))2

F(w,a,b,c) =|f (w,a,b,c) = (10)
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To find the extremum point of this function, we look for the root of its derivative. After
differentiation, we obtain the equation for the extremum point:

wW>M ? +(aw2 —b)2 afwt —b?
WANZ +(w? —1))2 w1

After simple transformations, we arrive at the following biquadratic equation:
w*(@®’N?*-M? +2a(b—a)) —2w?(b* —a*) — (b°N* —M? +2b(a—h)) =0 (12)

Equation (12) possesses dualities inherited from the original bridge. These dualities
arise from the substitutions a <> b and inversion of all parameters a<>1/a, b<«<1/b,
c <> 1/c.If (12) is written as

F(w,a,b,c) = (11)

k,(a,b,c)w* +k,(a,b,c)w’ +k,(a,b,c)=0 (13)
then M(a,b,c)=M(b,a,c), N(a,b,c)=N(b,a,c) (14)
k,(a,b,c) =—k,(b,a,c) k,(a,b,c)=-k,(b,a,c) (15)
This means that the roots satisfy the condition
1
w.(a,b,c) = ———
»(a,b,c) W (0,80 (16)

The condition
Mz(lla,l/b,llc)=$N2(b,a,c). N2(1/a,1/b,1/c)=%M2(b,a,c) a7)

means that when the parameters are inverted, equation (12) is multiplied by a constant, and its
roots remain unchanged.

w2 (1/a,1/b,1/c) =w.(b,a,c) (18)
The discriminant D of equation (12) can be represented as
_ 2
D = k2(a,b,c) - 4k, (a,b, )k, (a,b,c) = =)
(a+c)(b+c) (19)

E(02 (1+ab+2a*)(1+ab+2b%) +c(3(1+ab) + 2(a* + b?)) + (ab® + 2a +b)(a’b + 2b + a))

From this representation, it follows that the discriminant is always positive (for
ab #1), which means that the quadratic equation always has roots. However, we are only

interested in the positive root since it wg(a, b, c) corresponds to a physical frequency. From the

origin of this equation as the condition for the extrema of | f (X,a,b,C)|and from its dualities,

it follows that this quadratic equation can have either two negative roots or one positive and
one negative. A positive root exists, and hence an amplitude resonance point exists, only if

k,(a,b,c)k,(a,b,c) <0 That means
(a®N? -M?+2a(b—a))(b’N* -M? +2b(a—b)) >0 (20)
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Returning to the parameters and simplifying by positive factors, condition (20) can be
written as ¢(a,b,c) iy (b,a,c) >0

p(a,b,c) =(a* -1)(b+c)+2a(ab-1)(1+ac) (21)

w(a,b,c) =p(b,a,c) = (b* —1)(a+c)+2b(ab —1)(1+ bc) (22)

Thus, the domain of existence of amplitude resonance in the parameter space (a, b, c) is
determined by the conditions

{@(a,b,C) >0 {(p(a,b,c<0

(D(b,a,C) >0 or (P(b,a,C) <0 (23)

= C Rz Ri e R
S| €Il

| | NNN— |
Source: compiled by the author based on [1].

Fig. 2. Series (left, c = 0) and parallel (right, c =x) circuits
as special cases of the bridge circuit

It should be noted that all the derived formulas are stable with respect to limiting

transitions. They remain valid when the parameters (&,b,C) approach zero or infinity. In
particular, when ¢ — oo our bridge circuit transforms into a real (lossy) series RLC circuit, and
when ¢ — 0 — into a real parallel RLC circuit (see Fig. 2). For these circuits, equation (12)
allows an elegant symmetric solution, first found in [3, 6] for the parallel circuit. In [2], the
conditions for the existence of amplitude resonance for such a circuit were first derived, and
the corresponding existence domains in the parameter space (a, b) were plotted. In [4, 5], it was
shown how, through duality, the results for the parallel circuit can be extended to the series
circuit, yielding the corresponding formulas. In the derived formulas, dual expressions
appearing in the expansion of the discriminant D (19) of the quadratic equation play a key role:

(1+ ab+2a2)' (1+ab+2b2)’ (ab2+2a+b)’ (a2b+2b+a) (23)

_ \1+ab+2b? —b%J1+ab+2a’

X (a’b,OO)Z - (24)
’ J1+ab+2a% —a?\J1+ab+2b?
2 2 2
xo(a,b,0)2:xo(l/a,llb,oo)z:*/1+1/(ab)+2/b 1/b’\1+1/(ab)+2/a’ _
J1+1/(ab)+2/a% -1/ a%\/1+1/ (ab) + 2/ b?
(25)

afa (b@x/ab2+2a+b—\/a2b+2b+a)
byvb (a\/%\/azb+2b+a—x/ab2+2a+b)

In Fig. 3 and Fig. 4, domains on the parameter planes (a,b) are shown where amplitude

resonance exists or does not exist. On the left side of Fig. 3, the domains (1), (I1) show the
presence of phase resonance, while domains (I11), (1) show its absence. In the middle of Fig. 3,
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the domains of existence and nonexistence of amplitude resonance of the parallel RLC circuit
(the special case of the bridge for ¢ = o) are shown. The boundaries of
these domains are defined by equations

p(a,b,0) =(a*-1)+2a’(ab-1) =0 (26)
w(a,b,) = p(b,a,x) = (b* —1) + 2b%(ab—1) = 0
4 b 1 b 4 b
Zj (I][I) 2;’ /'l:" Ix\ { H | .
15 15 \ 15 \( 1J\
0.5 (T (TV) 0.5 (I \77?‘_‘_‘“_ 0.5 (] 7 Al
Pl L2 s S 2 S

UO 05 1 15 2 25 3 35 4 Oo 05 1 15 2 25 3 35 4 00 05 1 15 2 25 3 35 4
Source: author's development using a computer program.
Fig. 3. Domains of existence (I) and (I11) and non-existence (111) and (1V) of phase (left)

and amplitude resonance. In the center, ¢ = «; on the right,c =0
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Fig. 4. Regions of existence (1), (I1) of amplitude resonance for arbitrary c

with boundary curves for ¢ =0 and ¢ = ©
The intersection points of the boundaries with the coordinate axes are at @ =+/1+ \/E

and b = 1+\/§. On the right side of Fig. 3, the regions of existence and nonexistence of

amplitude resonance of the series RLC circuit (the special case of the bridge for ¢ = 0) are

shown. The boundaries of these regions are determined by equations
»(a,b,0)=(a* -Db+2a(ab-1)=0 @
w(a,b,0) =p(b,a,0) = (b* —Da+2b(ab-1) =0
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These curves have asymptotes at a=\/\/§ -1,b =\/\/§ —1 and asymptotically

approach the coordinate axes. In Fig. 4, the domains (1), (1) where amplitude resonance exists
for arbitrary c are shown. As a typical example, the value ¢ = 1 is taken. The boundaries of the
resonance existence domains are determined by equations (21), (22) and are located between
the curves for ¢ = 0 and ¢ = . As seen in Fig. 4, when the parameter ¢ decreases from oo to 0,
the resonance existence region (I) expands. It should also be noted that in domains (I) the

. 2 . .
function F(w,a,b,c)=|f(w,a,b,c)| has a maximum, corresponding to current resonance,

while in domains (I1) the modulus of the impedance has a minimum, corresponding to voltage
resonance. In domains (I11) the modulus of the impedance increases monotonically, and in
domains (IV) it decreases monotonically.

4. Special and limiting cases. A particular point in the study of the frequency behaviour
of the bridge circuit is the point a =1;b =1. At this point, the impedance becomes a constant

function, independent of frequency. In the neighbourhood of this point, the resonance properties
of the circuit become unpredictable — this is the bifurcation point of the resonance frequency.
Approaching this point along different paths can lead to any resonance frequency value. The
above formulas in this case become indeterminate.

If a=b =1, all the formulas become absolutely symmetric with respect to substitution
a<>b and yield a unit reduced frequency of phase and amplitude resonance

X, =1, =1/~/CL.
For a balanced bridge Z,Z,=2,Z,, in our parameters we obtain the condition

a-b =1. One can verify that in this case neither phase nor amplitude resonance occurs for any

value of ¢. The curve a-b =1 always lies in the middle of domains (111) and (1V) for any value
of c. In Fig. 3 it is shown as a dashed line.

5. Conclusion. The presented analysis establishes a unified basis for studying the
frequency-dependent behavior of generalized bridge circuits. As a result of our research, we
have obtained new, previously unknown results concerning the frequency behavior of bridge
circuits. The derived conditions for amplitude and phase resonance determine the exact
boundaries between resonant and non-resonant regions. The introduced dimensionless
parameters allow us to obtain a compact analytical representation and emphasize the self-
duality and symmetry inherent in the system. We show how the properties of self-duality and
self-symmetry of the circuit are reflected in the obtained exact formulas. These results naturally
extend to classical RLC circuits as limiting cases of the bridge configuration.
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